ions are $m / z 60$ and 62 , respectively. Thus, pathway A must be the only one operative. We can therefore state unequivocally that those $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}^{+\cdot}$ ions from 1,4-dioxane which show a $\mathrm{C}_{2} \mathrm{H}_{4}^{+\cdot}$ transfer must have the acyclic structure $1^{7,8}$ and have a lifetime of at least 1 ms . Our results thus provide experimental substantiation of the $a b$ initio prediction ${ }^{1}$ of a stable $\mathrm{C} \ldots \mathrm{C}$ ring-opened isomer of the trimethylene oxide cation radical.
(7) The possibility that ion 1 could undergo a 1,2-hydrogen shift to give another low-energy species $\mathrm{CH}_{3} \mathrm{CHO}^{+} \cdot \mathrm{CH}_{2},{ }^{1}$ which could then be the ion which transfers $\mathrm{C}_{2} \mathrm{H}_{4}{ }^{+}$, can be ruled out. The above $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}^{+}$isomer, generated from fragmentation of the molecular ions of either 4 -methyl-1,3-dioxolane ${ }^{1}$ or 4,5 -dimethyl-1,3-dioxolane, shows reactions with both acetonitrile and pyridine ${ }^{9}$ which are different from those of the $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}^{+\cdot}$ ion from 1,4dioxane.
(8) We consider that the transfer of $\mathrm{C}_{2} \mathrm{H}_{4}^{+}$from the molecular ion of trimethylene oxide to acetonitrile is also likely to occur via the C…C ringopened ion 1.
(9) Baumann, B. C.; MacLeod, J. K., unpublished results.

Bruno C. Baumann, John K. MacLeod,* Leo Radom
Research School of Chemistry Australian National University Canberra, ACT 2600, Australia

Received June 28, 1980

Cyclic 4π Stabilization. Combined Möbius-Hückel Aromaticity in Doubly Lithium Bridged $\mathbf{R}_{4} \mathbf{C}_{4} \mathrm{Li}_{\mathbf{2}}$ Systems ${ }^{1}$

Sir:
How can cyclic 4π electron topologies, usually associated with "antiaromaticity", be stablized? We propose a simple solution to this problem: two energetically favorable molecular orbitals, one Hückel and one Möbius in character, ${ }^{2}$ are utilized. Consider the generalized metallocycle, I , in which M contributes no π

1

II

III
electrons but offers vacant orbitals of p (II) and d (III) symmetry. The four π electrons of the butadiene moiety can now be delocalized effectively in two MO's, II (Hückel type, no phase inversions) and III (Möbius type, one phase inversion; the nodal plane passing through M does not count). ${ }^{2}$ Since different basis sets of atomic orbitals are utilized in II and III, combined Hückel-Möbius character results.

Although many metallacycles are known ${ }^{3,4}$ and the possibility of d-orbital involvement (III) has been considered in detail, ${ }^{3,5}$ we are not aware of any 4π systems (I) which demonstrate the special stabilization associated with "aromaticity". ${ }^{6}$ Perhaps the C-M

[^0]σ bonds in I are too long to permit effective overlap in orbitals like III. There is a way around this diffculty.

Instead of completing the ring by means of a coplanar atom (M in I), this can be achieved by two atoms or groups, M in IV,

IV ($\mathrm{C}_{2 \mathrm{v}}$)

v

VI
placed roughly between C_{1} and C_{4} but above and below the carbon plane. This would confer greater geometrical flexibility with regard to the $\mathrm{C}_{1}-\mathrm{C}_{4}$ separation. In Hückel MO V, s orbitals of M are utilized; in Möbius MO VI, the involvement of M p orbitals is required.
We think it is likely that systems like IV are already known experimentally, although their nature has not been recognized. Diphenylacetylene dimerizes with metallic lithium to give a dilithiated species, ${ }^{7}$ traditionally written in the all-cis form, VII,

VII

VIII

IX
perhaps because of its utility in preparing various heterocycles (I). ${ }^{4}$ Diphenylacetylene reacts with n-butyllithium anomalously. The reaction does not stop with a simple triple bond addition; specific metalation of a single "pseudoacidic" ortho phenyl hydrogen occurs as well to give VIII. ${ }^{8}$ VII, VIII, and o, o^{\prime} 'dilithiobiphenyl (IX) ${ }^{4 c}$ can be regarded as derivatives of IV-Li possibly favoring double lithium bridging.
We have investigated this problem by means of molecular orbital calculations. Numerous trial structures for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Li}_{2}$ were examined by utilizing the semiempirical MNDO method. ${ }^{9}$ The most energetically competitive structures (including IV and XXIII) were recalculated, by use of the minimal STO-3G basis set

and full-geometry optimization within the symmetries selected. ${ }^{10}$ Single point split valence basis 4-31G//STO-3G calculations followed; the lowest energy structural forms (IV-Li and XIII-Li) were then optimized with the $4-31 \mathrm{G}$ basis $(4-31 \mathrm{G} / / 4-31 \mathrm{G}) .{ }^{10}$ Table I summarizes the energies and provides some geometrical information; the supplementary material can be consulted for the full geometries.

In addition to the structures shown (IV and X-XIII), lower symmetry alternatives were also considered. These include C_{s} and
(7) Schlenk, W.; Bergmann, E. Liebigs Ann. Chem. 1928, 463, 71. Smith, L. I.; Hoehn, H. J. Am. Chem. Soc. 1941, 63, 1184.
(8) (a) Mulvaney, J. E.; Garlund, Z. G.; Garlund, S. L.; Newton, D. J. J. Am. Chem. Soc. 1966, 88, 476. (b) Mulvaney, J. E.; Groen, S.; Carr, L. J.; Garlund, Z. G.; Garlund, S. L. Ibid., 1969, 91, 388. (c) Mulvaney, J. E.; Newton, D. J. J. Org. Chem. 1969, 34, 1936. Also see: Curtin, D. Y.; Quirk, R. P. Tetrahedron 1968, 24, 5791 . Bridging lithium species may explain results reported by: Hoberg, H.; Gotor, V. J. Organomet. Chem. 1978, 148, 1.
(9) Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc., 1977, 99, 4899, 4907. The parameterization for lithium (Thiel, W.; Clark, T., unpublished) is still in the development stage
(10) The Gaussian 76 program with the standard basis sets was used: Binkley, J. S.; Whiteside, R. A.; Hariharan, P. C.; Seeger, R.; Pople, J. A.; Hehre, W. J.; Newton, M. D. QCPE 1979, 11, 368.

Table I. Energies and Geometries of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Li}_{2}$ Isomers

structure	total energies, hartrees		relative energies, $\mathrm{kcal} / \mathrm{mol}$		bond lengths, $\AA(\mathrm{STO}-3 \mathrm{G})^{\text {a }}$				
	STO-3G//STO-3G	4-31G//STO-3G	STO-3G//STO-3G	4-31G//STO-3G	$r\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$	$r\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)$	$r\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$	$r\left(\mathrm{C}_{1}-\mathrm{M}\right)$	$r\left(\mathrm{C}_{2}-\mathrm{M}\right)$
$\Gamma \mathrm{V}-\mathrm{Li}$	-166.58116	-168.40602	0.0	0.0	2.966	1.369	1.517	1.968	2.188
		$-168.41671^{\text {b }}$		$(0.0)^{b}$	$2.505^{\text {b }}$	$1.336^{\text {b }}$	$1.502^{\text {b }}$	$2.074^{\text {b }}$	$2.413^{\text {b }}$
X	-166.42868	-168.32652	95.7	49.9	3.324	1.333	1.498	1.908	3.008
XI	-166.46491	-168.35050	73.0	34.8	3.758	1.329	1.494	1.863	2.412
XII	-166.47343	-168.33613	67.6	43.9	3.805	1.342	1.494	1.776	2.026
XIII-Li	$-166.57482^{\text {c }}$	-168.36612	4.0	25.0	1.478	1.478	1.478	1.952	1.952
		$-168.37482^{\text {b }}$		$(26.3)^{b}$	$1.473{ }^{\text {b }}$	$1.473{ }^{\text {b }}$	$1.473^{\text {b }}$	$2.069^{\text {b }}$	$2.069^{\text {b }}$

${ }^{a}$ The usual butadiene numbering was used. ${ }^{b} 4-31 \mathrm{G} / / 4-31 \mathrm{G} .{ }^{c}$ Reference 12 .
C_{2} distortions of IV (in which the atoms were shifted out of the σ_{v} symmetry plane) and relatives of XI and XII twisted around the $\mathrm{C}-\mathrm{C}$ single bond. The energies did not improve.

A number of additional structural possibilities were probed, but these were not competitive in energy with the global minimum, IV-Li. In particular, a structure in which a five-membered ring, comprised of four carbons and a lithium atom, was capped by lithium (as in the ferroles) ${ }^{11}$ proved not to be an energy minimum.

Our combined Möbius-Hückel aromatic candidate (IV-Li) is indicated to be remarkably stable relative to all other forms examined, especially \mathbf{X}, suggested by the traditional cis-planar representations of VII-IX. ${ }^{4}$ X is unfavorable, both sterically and electronically. XI, the s-trans rotamer of X, and the all-trans isomer, XII, are more favorable energetically, but neither can compete with IV-Li. The energy gained on cyclization, XI \rightarrow IV-Li, $35 \mathrm{kcal} / \mathrm{mol}(4-31 \mathrm{G} / / \mathrm{STO}-3 \mathrm{G})$, provides a good estimate of the resonance energy of our newly proposed Hückel-Möbius aromatic system, IV-Li.

Alternating $\mathrm{C}-\mathrm{C}$ bond lengths are indicated in the structure of IV-Li, whereas more nearly equal bond lengths are generally associated with Hückel aromatics. The different $\mathrm{C}_{1}-\mathrm{C}_{2}(1.37 \AA)$ and $\mathrm{C}_{2}-\mathrm{C}_{3}(1.52 \AA)$ distances are a natural consequence of the occupation of the two non-degenerate orbitals, V and VI. Despite the short $\mathrm{Li} \cdots \mathrm{Li}$ distance in $\operatorname{IV}-\mathrm{Li}(\mathbf{2 . 4} \AA)$, the overlap population indicates an antibonding interaction.

IV- Li also competes successfully energetically against the Hückel aromatic alternative, XIII-Li. ${ }^{12}$ XIII can be considered to be a derivative of the 6π cyclobutadiene dianion, $\mathrm{C}_{4} \mathrm{H}_{4}{ }^{2-}$, ${ }^{13}$ interacting on top and bottom faces with two M^{+}cations. Alternatively, XIII-Li can be regarded as one of the simplest "inverse sandwiches"14 obeying a six interstitial electron rule ${ }^{15}$ in which three stablized orbitals are utilized to bind a four-membered ring $\left(\mathrm{C}_{4} \mathrm{H}_{4}\right.$ in XIII) and two caps (M in XIII) together. ${ }^{12}$ This rule also applies to the BeH capped analogue (XIII-BeH) and to its isoelectronic relatives, the carborane, $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$, and the borane, $\mathrm{B}_{6} \mathrm{H}_{6}{ }^{2-}{ }^{12}$

Despite its favorable electronic structure, XIII-Li is indicated ($4-31 \mathrm{G} / / 4-31 \mathrm{G}$) to be $26 \mathrm{kcal} / \mathrm{mol}$ less stable than IV-Li. Both IV and XIII represent energy minima on the $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{Li}_{2}$ poten-tial-energy surface; their interconversion is orbital symmetry forbidden. In this context, the analysis by Thorn and Hoffmann ${ }^{11}$ of transition-metal complexes closely related in geometry to IV and XIII is quite illuminating. However, the ligands examined were not isolobal with Li .

Isolobal transition-metal analogues may be realizable if IV exhibits "aromaticity". It is also possible that crystalline derivatives of IV, e.g., VII-IX, amenable to X-ray analysis, might be

[^1] K.; Chandrasekhar, J.; Schleyer, P. v. R. J. Org. Chem. 1980, 45, 1608.
prepared. ${ }^{4 b}$ The symmetrical double bridging exemplified by IV-Li, which may be present in VII-IX as well (e.g., XIV), ${ }^{16}$ is

a general feature of polylithium compounds, at least as is indicated by our published ${ }^{17}$ and unpublished ${ }^{1}$ calculations on numerous systems.

Acknowledgment. This work was supported by the Fonds der Chemischen Industrie. We thank Dr. E. D. Jemmis for calculations on XIII, ${ }^{12}$ Professor W. Heilbronner for perceptive comments, Dr. J. Chandrasekhar for much help, the Regionales Rechenzentrum for assistance, and Professor R. Hoffmann for his interest.

Supplementary Material Available: STO-3G//STO-3G and 4-31G//4-31G geometries (coordinates and Z matrices) for IV-Li and X-XIII (5 pages). Ordering information is given on any current masthead page.
(16) MNDO calculations indicate the doubly bridged form of $0,0^{\prime}-\mathrm{di}$ lithiobiphenyl (XIV) to be $59 \mathrm{kcal} / \mathrm{mol}$ more stable than planar ($C_{2 v}$) IX and $22 \mathrm{kcal} / \mathrm{mol}$ more stable than a C_{2} conformation fixed at a 90° angle.
(17) Apeloig, Y.; Schleyer, P. v. R.; Binkley, J. S.; Pople, J. A.; Jorgensen, W. L. Tetrahedron Lett. 1976, 3923. Jemmis, E. D.; Chandrasekhar, J.; Schleyer, P. v. R. 1979, 101, 2848. Kos, A. J.; Poppinger, D.; Schleyer, P. v. R.; Thiel, W. Tetrahedron Lett. 1980, 21, 2151. Apeloig, Y.; Clark, T.; Kos, A. J.; Jemmis, E. D.; Schleyer, P. v. R. Isr. J. Chem. 1980, $20,43$.

Alexander J. Kos, Paul von Ragué Schleyer* Institut für Organische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg D-8520 Erlangen, Federal Republic of Germany

Received August 11, 1980

Thionium Ions as Carbonyl Substitutes. Synthesis of Cyclic Imino Thioethers and Lactams

Sir:
The unparalleled role of the carbonyl group in organic synthesis suggested consideration of functional equivalents. Foremost among the possibilities stands the thionium ion whose higher polarity and low π bond strength led us to refer to it as "super carbonyl". ${ }^{1}$ Its

[^2]
[^0]: (1) Presented at the Annual Chemical Congress, The Chemical Society Durham, England, April 1980 (See: Chem. Brit. 1980, 16, 385) and at the Royal Society of Chemistry International Symposium, "Metall-Organics in Organic Synthesis", Swansea, Wales, July 1980.
 (2) Heilbronner, E. Tetrahedron Lett. 1964, 1923. Zimmerman, H. Acc. Chem. Res. 1971, 4, 272.
 (3) For leading references see: Thorn, D. L.; Hoffmann, R. Nouv. J. Chim. 1979, 3, 39
 (4) (a) Leavitt, F. C.; Manuel, T. A.; Johnson, F.; Matternas, L. U.; Lehman, D. S. J. Am. Chem. Soc. 1960, 82, 5099. Braye, E. H.; Hübel, W.; Caplier, I. Ibid. 1961, 83, 4406 . (b) Eisch, J. J.; Galle, J. E. J. Organomet. Chem. 1975, 96, C23. Eisch et al. describe VII as a "crystalline yellow-dietherate". (c) Wakefield, B. J. "The Chemistry of Organolithium Compounds"; Pergamon Press: Oxford, 1974.
 (5) Craig, D. P. J. Chem. Soc. 1959, 997. Böhm, M. C.; Gleiter, R. J. Chem. Soc., Perkin Trans. 2, 1979, 443.
 (6) Bushby, R. J.; Patterson, A. S. J. Organomet. Chem. 1977, 132, 163. Bushby et al. have called attention to the 4π Möbius character of the bridged structure of allyllithium. Also see: Reetz, M. T. Tetrahedron 1973, 29, 2189.

[^1]: (11) Thorn, D. L.; Hoffmann, R. Inorg. Chem. 1978, 17, 126.
 (12) Jemmis, E. D. Ph.D. thesis, Princeton University, 1978. Jemmis, E. D.; Schleyer, P. v. R., to be published. The possibility of a benzocyclobutadienyl dianion structure for VIII was specifically considered in ref 8 b , but ruled out. A metallacycle-ion-pair alternative was suggested.
 (13) Garratt, P. J.; Zahler, R. J. Am. Chem. Soc. 1978, 100, 7753 and refs cited therein.
 (14) Lauher, J. W.; Elian, M.; Summerville, R. H.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 3219.
 (15) See Collins, J. B.; Schleyer, P. v. R. Inorg. Chem. 1977, 16, 152. Chandrasekhar, J.; Schleyer, P. v. R.; Schegel, H. B. Tetrahedron Lett. 1978, 3393; Jemmis, E. D.; Alexandratos, S.; Schleyer, P. v. R.; Streitwieser, Jr., A.; Schaefer, H. F., III J. Am. Chem. Soc. 1978, I00, 5695. Krogh-Jespersen,

[^2]: (1) Trost, B. M.; Reiffen, M.; Crimmin, M. T. J. Am. Chem. Soc. 1979, 101, 257 and references therein. Reetz, M. T.; Huttenhain, S.; Walz, P.; Lowe, U. Tetrahedron Lett. 1979, 4971. Brinkmeyer, R. S. Ibid. 1979, 207. Mizyuk, V. L.; Semenovsky, A. V. Ibid. 1978, 3603. Kozikowski, A. P.; Ames, A. J. Am. Chem. Soc. 1980, 102, 860.

